APPROACHING THE MYCOTOXIN PROBLEM FROM THE POULTRY PERSPECTIVE

Heaven Le A. Roberts
PhD Fellow, Oregon State University

She’s not Dr. Hermes…

• PhD Fellow at Oregon State University
• Nutritional toxicology in livestock
• Loves chickens, loves quail more
• Current: avian metabolism of ergot alkaloids

Not Mycoplasma

• Secondary fungal metabolites
• History lesson from the poultry industry
 • Turkey X Disease
• The big fungal players
 • Aspergillus (aflatoxin, ochratoxin)
 • Fusarium (T-2, HT-2, deoxynivalenol, fumonisin, zearalenone)
 • Claviceps (ergot alkaloids)

What mycotoxin problem?

• How big is the problem?
 • Well… that’s the problem
 • Did you feed your feed?
 Did you tell anyone?
• The journey from lot to sample…

She’s not Dr. Hermes…

• PhD Fellow at Oregon State University
• Nutritional toxicology in livestock
• Loves chickens, loves quail more
• Current: avian metabolism of ergot alkaloids

Is there a problem?

“But… birds are resistant to toxins?”

Poultry-specific issues

• Concentrate rich diet
• Dose (g toxin/kg BW)
 • Willingness to eat!
• Scale of production
 • Automation, rapid turnover
• Species-specific toxicity
Aspergillus (and *Penicillium*)

- **Primary target:** Liver
 - Ruminal biotransformation
 - Nutrient utilization
 - Calcium (shell and bone)
 - Iron (blood clotting)
 - Lipids (fatty liver)
 - 1 mg/kg increases AFB
 - >5% decreased growth

Dr. Jean Sander, Merck Manual

Aflatoxin – the Golden Child

- Only mycotoxin with FDA Action Level

<table>
<thead>
<tr>
<th>Component</th>
<th>Action Level (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn/Peanut</td>
<td>30</td>
</tr>
<tr>
<td>Collard Meal</td>
<td>30</td>
</tr>
<tr>
<td>Corn/Peanut</td>
<td>20</td>
</tr>
<tr>
<td>Collard Meal</td>
<td>10</td>
</tr>
<tr>
<td>Anything but Collard</td>
<td>52</td>
</tr>
<tr>
<td>Anything Dairy</td>
<td>52</td>
</tr>
</tbody>
</table>

- But is aflatoxin still a major concern?

Ochratoxin

- Not host plant specific
- Primary target: Kidney
 - Altered calcium metabolism
 - Gout
 - Shell quality
- Immunosuppressive
 - 0.1 mg OTA/kg (Pozo et al., 2013)

Fusarium (or Gibberella)

- **Primary target:** Liver
- Rare occurrence for U.S.
- Cool and wet conditions
- Major targets: Liver, immune system
- 1 mg/kg reduced Newcastle titers
- 1 mg/kg reduced egg production, shell quality only at high doses (20 mg/kg)

T-2 toxin (type A trichothecene)

- Rare occurrence for U.S.
 - Cool and wet conditions
- Oral and GI lesions
 - Major targets: Liver, immune system
- 1 mg/kg reduced Newcastle titers
 (Kumazawa et al., 2005)
- Immunosuppressive effects
 (Net et al., 2005)

Biotage

2016 maximum: .1 mg/kg
Deoxynivalenol (type B trichothecene)

- Not as toxic, but most common
- Immune system, oral and GI lesions

Antonissen et al. 2014

Fumonisins

- Hot summers + wet winters
- Altered lipid metabolism
 - Systemic effects, especially in brain, skin, GI tissue, liver
- 30mg/kg for breeding poultry / 100mg/kg for broilers (FDA recommendations)

Grenier et al., 2016

Zearalenone (F-2)

- Largely resistant
 - Turkeys: yes, reduced production… 100mg/kg (Allen, 1983)
 - Poor bioavailability (~5-10%)
 - Rapid metabolism
 - Chickens: β, Turkeys: α (Devreese et al., 2016)
 - Mechanism of action

<table>
<thead>
<tr>
<th>Samples</th>
<th>Positive</th>
<th>Median (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Corn / Other)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zearalenone</td>
<td>305 / 31</td>
<td>.097 / .035</td>
</tr>
</tbody>
</table>

Ergot alkaloids

- One alkaloid is a lonely alkaloid
 - Ergotamine, ergotoxine, ergocornine, lysergic acid, ergonovine, etc.
 - Ergot as an indicator of alkaloid level?
- Long-term exposure
 - Feed refusal (oral lesions)
 - Limb/comb necrosis
 - Reduced egg quality
 - Parasite interactions (are we seeing a theme here?)
 - Varies greatly with individual alkaloids

Humans and other mammals are much more sensitive to ergot alkaloids

Ergot alkaloids and Coturnix quail

- Species-specific resistance
 - Coturnix quail & chickens resistant to ergot alkaloids
 - 20% forage intake (USDA, pastured poultry)
Ergot alkaloids and Coturnix quail (cont.)

- Detoxification pathways?
- Where do all the toxins go? ~10% recovery?
- Ergotamine metabolized similarly in chickens? (Dänicke, 2016 & 2017)

What are we looking for?

- Mediocre performance
- Often nondescript
- Reduced disease resistance
- Vaccine non-performance
- Parasite load
- GI lesions
- Personnel health

Questions

(comments as “questions”)

-