Challenges in controlling *Salmonella* in poultry and poultry products

Devendra Shah
DVM, MS, PhD
Associate Professor
Department of Veterinary Microbiology & Pathology
Washington State University
Pullman WA 99164-7040
Email: dshah@vetmed.wsu.edu
Phone: 509-335-6071

Why is Salmonella so important?
- Number **ONE** cause of food-borne illness (diarrhea)
- Live poultry is the *reservoir host* of *Salmonella*
- Poultry and poultry products (eggs and meat) are **PRIMARY** sources of human infection

What is Salmonella?
- **Biology of *Salmonella*** is complex
- **Many serotypes** (>2500)
 - At least 10% of these are found in poultry
 - Few are MOST common in the US poultry
 - What *Salmonella* serotypes are most common problems for US poultry meat producers?

- *S. Enteritidis*
- *S. Typhimurium*
- *S. Heidelberg*
- *S. Kentucky*
- *S. Infantis*
- *S. Mbandaka*
- *S. Montevideo*
- *S. Seftenberg*

Incidence of *Salmonella* serotypes in the retail chicken in the US

*Most Prevalent Poultry-associated *Salmonella* seroTypes (MPPSTs)*

Incidence of *Salmonella* serotypes in the raw poultry products in the US

USDA-FSIS (1996-2012)

Population dynamics of *Salmonella* is a challenge & a significant concern

- **MPPSTs**
 - *S. Enteritidis*
 - *S. Typhimurium*
 - *S. Heidelberg*
 - *S. Infantis*
 - *S. Mbandaka*
 - *S. Montevideo*
 - *S. Kentucky*
 - *S. Seftenberg*

March 1, 2013 to July 11, 2014: Foster Farms recalled 12 million lb of potentially contaminated chicken products (804 sick people)

January 10, 2014: Tyson Foods, Inc. recalled 33.840 lb of potentially contaminated chicken products (9 sick people)

February 2013-2014 (mail-order hatchery related outbreaks)
- Mt. Healthy Hatchery (Ohio) - 521 sick people
- Estes Hatchery (Missouri) - 96 sick people
- Salmonella in backyard poultry

2013-2014: Ciprofloxacin resistant sequence type 198 has emerged in the US and Canada (African origin?)

WSU (2012): Two strains isolated from CA broiler samples (resistant to 3rd generation cephalosporin)
Why is *Salmonella* control so challenging?

* Each serotype is unique in its own way
 - Resistance to antimicrobials
 - Infectivity in chickens (e.g., high invasive vs low invasive)
 - Biofilm production
* There are phenotypic differences within each serotype
 - Not all S. Enteritidis strains contaminate eggs equally well
 - Not all S. Heidelberg strains are resistant to antimicrobials
* Current food-safety protocols are primarily based on the big TWO
 - S. Typhimurium
 - S. Enteritidis

Why is *Salmonella* control so challenging?

- Carcass chilling: Important step in reducing *Salmonella*
 - pH (≤ 6.5)
 - Max. 50 PPM Free Chlorine
 - Temp. ~4°C
- High amounts of organic matter (fat, blood and protein) can get accumulated in chiller tank and can reduce available chlorine
- Several contaminating serotypes
- Do different serotypes differ in their susceptibility to chlorine in chiller tanks?

Why is *Salmonella* control so challenging?

- Another challenge is EXTERNAL vs. INTERNAL contamination of carcasses
 - Conventional paradigm is that ALL contamination occurs at EXTERNAL surface of carcasses during processing

What we KNOW about *Salmonella*?

- *Salmonella CAN get inside the internal organs of chickens* (liver, spleen, muscle, bone marrow etc)

Why is *Salmonella* control so challenging?

- What we DO NOT know
 - Are all MPPSTs equally efficient in their ability to internalize in organs including bone marrow?
 - Are there within serotype differences for other MPPSTs?
 - Which MPPSTs persist in internal organs until the age of slaughter?
 - If *Salmonella* is HIDDEN in organs, how effective surface decontamination will be?
Why is *Salmonella* control so challenging?

- Another challenge is **BIOFILM** production by *Salmonella*

Biofilms protect *Salmonella*
- can carry billions of *Salmonella*
- can provide physical barrier to antimicrobials such as chlorine or other disinfectants
- can be 1000 times more resistant to antibiotics
- Provides means to persist in the environment

MPPSTs differ in their ability to form biofilm & resistance to antibiotics

- 145 MPPSTs tested so far
- Most isolates were obtained here at AHFSL, Puyallup
- Biofilm production is common among most MPPSTs
- Antibiotic resistance is common among MPPSTs

Take home message

- All MPPSTs are potential pathogens
- Current food-safety protocols may not work effectively against all serotypes/strains of *salmonella*
- Need to develop of **serotype-independent strategies** to control *Salmonella* for both on-farm and in-plant control of *Salmonella*
 - Better understanding of the differences in the biology of MPPSTs
 - Infectivity of MPPSTs in chickens (internal vs. external contamination)
 - Biofilm and its role in resistance to carcass decontaminants and persistence in the poultry environment

Questions?