Alternatives to Antibiotics in Poultry Diets

Gita Cherian, Ph.D.

Department of Animal and Rangeland Sciences
Oregon State University, Corvallis, Oregon
Presented at Poultry Institute, WSU, Nov 5, 2013
Gita.Cherian@oregonstate.edu

Poultry Production System

• Goals
 – To Optimize Performance
 • Feed Cost over 65% of Production
 – Minimize Nutrient Excretion
 – Promote Bird Health
 • Gastro-intestinal tract
 – Barrier
 – Microbiota
 – Immune organ
Healthy Gut = Healthy Bird

Nutrition: Jungle Fowl vs. Modern Poultry

- Diets
 - Varied diets vs. Corn-soy
 - Omnivore vs. Granivore
- Gut Structure
 - Less processed feeds
- Selective Breeding
 - Fast growth
 - Increase in nutrient requirements
 - Dampened Immunity

Managing Gut Health

- Current Situation
 - 1. Vaccines
 - Protection against a particular pathogen
 - Response to vaccination
 - Feed withdrawal
 - Vaccination not an option for the many less virulent pathogens

Source: Canadian Poultry Magazine
Managing Gut Health

• Current Situation
 – 2. Antimicrobials
 • Broad spectrum protection
 • Growth promotion
 • Continual usage
 • Species-specific

Alternatives Measures Needed—Why?

• Global Problem
• Trend for Eliminating Antibiotics
 • Ban in EU
• Niche Markets
• Demand from Consumers, Scientific Community
Alternatives Measures Needed—Why?

- Transfer of Antibiotic-Resistance Genes
 - (supergerm)
- Residues in Food Products
- Resistance Development
- Antibiotic Shuttling

Alternatives Measures?

- Big Question
 - Not enough options or answers
- Using Feed Additives
 - Pro/Pre-biotics, Plant Extracts, Acidifiers, Enzymes, Neutraceuticals
- Enhancing Bird’s Own Immune Health
Alternatives Measures

• Use of Feed Additives
 – Diverse Functions
 • Influence Gut Health, Enzyme action, Antioxidant roles
 • Alteration in VFA production
 – pH shift in the gut
 – Reduce pathogens

• Probiotics or “Direct-Fed Microbials”
 – Mixed cultures of live protective microbes
 • Gut sterile, establish strong populations of beneficial ‘good’ gut microflora
 – e.g. Lactobacillus
 • Prevent colonization by ‘bad’ pathogens
 – e.g. E. coli
 • Administered at hatching
 – ‘CenBiot’, ‘Biomate’
Alternatives Measures

• Pre-biotics
 – Non-digestible feed ingredients
 • “Food for the good microflora”
 – Improving the intestinal balance
 – Selectively stimulating the growth of one or a limited number of bacteria
 – e.g. Mannan Oligosaccharides (MOS)
 – Pro + Pre-biotics = Synbiotics

Alternatives Measures

• Fiber Degrading Enzymes
 – Non-starch polysaccharides (NSP)
 – Increase the rate of digestion
 – Limit the amounts of substrates available to the microflora
 • Volatile fatty acid production
 • Digesta viscosity
Alternatives Measures

• Essential Oils, Herbs, Botanicals
 • Volatile oils, plant-derived, drugs from plants, roots, leaves
 – e.g. thymol, carvacol, eugenol, cinnamaldehyde
 • Phenolic compounds
 – Appetite, saliva, digestive enzymes, antioxidant action
 – Variability in the product/studies
 – Can be potent, odor, feed intake reduction, volatile, stability aspects

Studies with Broilers on Phytogenic Compounds in my lab

Feeding *Artemisia annua* alters digesta pH and muscle lipid oxidation products in broiler chickens

G. Cherian,* A. Or,* L. C. Burke,† and W. Past†

*Department of Animal and Rangeland Sciences, Oregon State University, Corvallis OR; and Department of Crop and Soil Sciences, Washington State University, Pullman WA.

2013 Poultry Science 92:588–598

http://dx.doi.org/10.3944/2013-0772

Use of Organic Acid, Herbs and Their Combination to Improve the Utilization of Commercial Low Protein Broiler Diets

A.S. Abd El-Hakim*, G. Cherian* and M.M. Al†

*Department of Poultry Nutrition, Animal Production Research Institute, Dokki, Giza, Egypt
†Department of Animal Sciences, Oregon State University, Corvallis, OR, USA

ISSN 1885-8195
© Asian Network for Scientific Information, 2009
Artemisia *annua* as Feed Additive in Poultry

- **What is Known**
- **Anticoccidial Properties**
 - Artesimin
 - Reduce Cecal Lesion

Dried leaves of *Artemisia annua* protect chickens against cecal lesions due to *E. tenella* infection (Allen et al. 1997)
Artemisia Meal: Nutritional Characterization

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>4271 cal/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>27.8 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Lipids</td>
<td>4.74%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phenolics</td>
<td>4852 µg/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Vitamin E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Tocopherol</td>
<td>111.0 µg/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ-Tocopherol</td>
<td>84.5 µg/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.5 µg/g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Testing Artemisia as Phytogenic Feed Additive

Broiler Diets prepared with 0, 2, 4% Artemisia annua
Testing Artemisia *annua* as Phytogenic Additive in Poultry

- **Broiler Study**
 - One Day Old Broiler Chicks (n=96)
 - 32 birds per treatment
 - Control, 2% (ART2), 4% Artemisia (ART4) diets for 42 days
 - Corn-Soy-based
 - All other nutrients balanced
 - 22% Crude Protein
 - 3,200 kcal/Kg ME
 - Bird Growth and Carcass Characteristics
 - Feed consumption, Body weight
 - Organ weight, Abdominal fat pads

Artemisia *annua* as Feed Additive?

- **Digesta Collection**
 - Ileal, Ceca Digesta
 - Gut pH
- **Fecal oocyst count**
- **Meat Quality**
 - White and Dark Meat
Feeding Artemisia to Broiler Birds: Performance and Ceca PH

Day 42: Body Weight

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>ART2</th>
<th>ART4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carcass Weight

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>ART2</th>
<th>ART4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2300</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feed: Gain

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>ART2</th>
<th>ART4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cecal Digesta pH

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>ART2</th>
<th>ART4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Different letters for each bar indicate a significant difference (P < 0.05), n = 8.

Alternatives Measures: Use of Herbs

- Thyme, Curcumin, Citric acids in Broiler Feeding
 - Birds
 - n = 210
 - Low protein diets
 - 18% CP
 - 2900 ME
 - 0.2% of alternatives
 - Fed for 42 days

Oregon State University
Summary

- Nutrition becomes even more critical as antibiotics are (or will) eliminated
- Gastrointestinal tract is continuously exposed to foreign materials and challenges
- Gastric acidity is protective against intestinal colonization and translocation of pathogenic bacteria.
Summary

- Products that can replace
 - Economically affordable
 - Efficacious
 - Easy to use/process
 - Safe to the users, feeds, animals
 - Gut enzyme/pH resistant

Products that can Replace Antibiotics?
The Answer is

No Logical Substance

Take-Home Message

We Need a Combination of Nutrition, Management, Housing, Biosecurity, Hygiene, Education
Take Home Message

Diets are not Just Calories
Diet Affects Bird Health, Welfare, Disease Resistance
Ultimate Attainment of Full Genetic Potential

Acknowledgments

- Funding:
 - OSU Agriculture Research Foundation (Cherian)
 - Artemisia sample: Dr. I. Burke (WSU)
 - Life Sciences Discovery Fund (WSU)
Cheap feed

The conditions are bad — and this low cost feed is no better!

Maybe we should go on hunger strike!?